UNIDAD 3

DIFERENCIACIÓN EN VARIAS VARIABLES

Libro de referencia principal:

Cálculo de varias variables (7ma Edición)

Autor:

James Stewart

Plataforma virtual del curso: https://calculo2-unsl-1c2019.weebly.com

DIFERENCIACIÓN EN VARIAS VARIABLES

Índice calorífico en función de la temperatura y la humedad (National Weather Service de EEUU)

Humedad relativa (%)

atura real (°F)	T H	50	55	60	65	70	75	80	85	90
	90	96	98	100	103	106	109	112	115	119
	92	100	103	105	108	112	115	119	123	128
	94	104	107	111	114	118	122	127	132	137
	96	109	113	116	121	125	130	135	141	146
	98	114	118	123	127	133	138	144	150	157
	100	119	124	129	135	141	147	154	161	168

Si nos concentramos en la columna resaltada de la tabla, la cual corresponde a la humedad relativa de H=70%, está considerando el índice calorífico como una función de la variable única T para un valor fijo de H. Escribimos g(T)=f(T,70). Entonces g(T) describe cómo el índice calorífico I se incrementa cuando la temperatura real T se incrementa cuando la humedad relativa es de 70%. La derivada de g cuando T=96 °F es la razón de cambio de I con respecto a T cuando T=96 °F:

Tempera

DIFERENCIACIÓN EN VARIAS VARIABLES

$$g'(96) = \lim_{h \to 0} \frac{g(96+h) - g(96)}{h} = \lim_{h \to 0} \frac{f(96+h,70) - f(96,70)}{h}$$

Aproximamos g'(96) usando los valores de la tabla 1 y tomando h = 2 y -2:

$$g'(96) \approx \frac{g(98) - g(96)}{2} = \frac{f(98, 70) - f(96, 70)}{2} = \frac{133 - 125}{2} = 4$$

$$g'(96) \approx \frac{g(94) - g(96)}{-2} = \frac{f(94, 70) - f(96, 70)}{-2} = \frac{118 - 125}{-2} = 3.5$$

Al promediar los valores, la derivada g'(96) es aproximadamente 3.75. Esto quiere decir que cuando la temperatura real es de 96 °F y la humedad relativa es 70%, la temperatura aparente (índice calorífico) se eleva casi 3.75 °F ¡por cada grado que aumenta la temperatura real!

DIFERENCIACIÓN EN VARIAS VARIABLES

Ahora veamos el renglón resaltado de la tabla 1, el cual corresponde a la temperatura fija de T=96 °F. Los números de este renglón son valores de la función G(H)=f(96,H), la cual describe cómo el índice calorífico aumenta cuando la humedad relativa H se incrementa cuando la temperatura real es T=96 °F. La derivada de esta función cuando H=70% es la razón de cambio de I con respecto a H cuando H=70%:

$$G'(70) = \lim_{h \to 0} \frac{G(70+h) - G(70)}{h} = \lim_{h \to 0} \frac{f(96, 70+h) - f(96, 70)}{h}$$

Si hacemos h = 5 y -5, aproximamos a G'(70) usando los valores de la tabla:

$$G'(70) \approx \frac{G(75) - G(70)}{5} = \frac{f(96, 75) - f(96, 70)}{5} = \frac{130 - 125}{5} = 1$$

$$G'(70) \approx \frac{G(65) - G(70)}{-5} = \frac{f(96, 65) - f(96, 70)}{-5} = \frac{121 - 125}{-5} = 0.8$$

Al promediar estos valores obtenemos la estimación $G'(70) \approx 0.9$. Esto establece que, cuando la temperatura es de 96 °F y la humedad relativa es de 70%, el índice calorífico se eleva casi 0.9 °F por cada punto porcentual que aumenta la humedad relativa.